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Abstract: 

Accelerated degradation tests can be used as the basis for predicting the performance or 

state of health of products and materials at use conditions over time.  Measurements acquired at 

accelerated levels of stress are used to develop models that relate to the degradation of one or 

more performance measures.  Frequently, products/materials of interest are subjected to variable 

stress levels during their lifetimes.  However, testing is usually performed only at a few fixed 

stress levels.  In such cases, cumulative degradation models are developed and assessed by using 

data acquired under those fixed stress conditions.  The degradation rate at any stress condition 

within the range of the model can be estimated by the derivative of the cumulative model at that 

stress condition.  It follows that to predict cumulative degradation over variable use conditions, 

one might integrate the fluctuating degradation rate over time.  Existing approaches for doing 

this consider degradation rates that depend only on the current stress level.  Here, we propose to 

allow the degradation rate to also depend on the current state of health as indicated by the 

associated performance measure(s).  The resulting modeling approach is capable of portraying a 

broader range of degradation behavior than existing approaches.  The assertion of memoryless 

degradation by using this or any other approach should be assessed experimentally with data 

acquired under variable stress in order to increase confidence that the integrated rate model is 

accurate.  In this paper, we demonstrate the additional capability of the proposed approach by 

developing empirical memoryless rate-based degradation models to predict resistance increase 

and capacity decrease in lithium-ion cells that are being evaluated for use in electric vehicles.  

We then assess the plausibility of these models. 
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1. Introduction 
 

Accelerated degradation tests are used to study changes in product performance over time at 

accelerated stress conditions (see e.g., Meeker and Escobar 1998 and Nelson 2004).  Often, units 

are tested at one of several stress levels.  In other cases, usually in the context of step-stress 

testing, units are tested at multiple stress levels (e.g., see Tseng and Wen 2000).   Models based 

on the results of such testing are typically used to predict the degradation of the product at a 

target use condition.  Accelerated degradation testing can provide significantly more information 

than other forms of accelerated tests, as useful information can be acquired from a test unit prior 

to its failure.  Benefits include a better basis for accurate time extrapolation and an improved 

chance of finding a useful mechanistic model (e.g., see Meeker and Escobar 1993).  Accelerated 

degradation tests involve one or more measures that relate to the state-of-health of a test unit.  

For example, the luminosity of a light emitting diode (LED) decreases as the LED ages (e.g., see 

Tseng and Wen 2000, Park and Bae 2010, and Cai et al. 2016).  Failure occurs when the level of 

degradation increases beyond some critical limit. One objective is to model the progression of 

the degradation measure across stress conditions and time in order determine a product’s useful 

life.  The utility of a model is determined by its ability to accurately extrapolate performance 

from accelerated conditions to nominal use conditions. Models can be either empirical or 

physical/mechanistic (see e.g., Escobar and Meeker 2006).  Common model forms relating to 

accelerated degradation data (and other forms of accelerated tests) are discussed in Escobar and 

Meeker 2006.  Accelerated degradation testing has been used in association with a large variety 

of products such as integrated circuits (e.g., see Meeker, Escobar, and Lu 1998 and Santini et al. 

2014), electrical meters (Yang et al. 2014), solar cells (Wang and Wong 2015) and rechargeable 

lithium-ion electrochemical cells which is the focus of our discussion here. 

We discuss a simple experiment and associated analysis in which we examine the plausibility 

of memoryless degradation in the case of a particular design of lithium-ion cells that was being 

evaluated for use in electric vehicles.  Knowledge concerning the degradation of lithium-ion cells 

is needed as the use of high-power and -energy lithium ion batteries in automotive applications, 

such as hybrid and plug-in hybrid electric and full-electric vehicles, is rapidly growing.  Before 

these batteries can be used in such a demanding application, there must be some assurance that 

the life of the automotive battery is close to that of the vehicle, ~15 y.  Batteries are deliberately 

oversized for use in new vehicles to allow for satisfactory performance following degradation 
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near a vehicle’s end of life. Thus, battery life is often expressed in terms of the time that it takes 

for capacity and/or power to be degraded by some fixed relative amount (e.g., see Barré et al. 

2013).  In terms of capacity, the state of health of a battery is represented by the proportion of 

capacity remaining relative to its initial capacity.  Loss of capacity reduces the range of electric 

vehicles.  In addition, satisfactory acceleration of electrical vehicles requires a sufficient level of 

power from the battery.  Power is adversely affected by increased cell resistance.  The state of a 

battery might also be represented by its resistance relative to its initial state.  Thus, the 

degradation measures that we focus on here are relative values of discharge capacity and cell 

resistance. 

The life of a rechargeable battery is affected by both the conditions of its active use 

(charge/discharge cycling) and conditions during inactivity (calendar aging).  In electric vehicle 

applications, batteries experience non-constant stress during periods of active use and periods of 

inactivity. The USABC (a consortium of Ford, Fiat-Chrysler Automobiles, General Motors and 

the US Department of Energy (DOE)) and the DOE have sponsored many efforts to accurately 

predict battery life to assure manufacturers and consumers that the long-life goal can be met 

(e.g., see Christophersen et al. 2006, Christophersen et al. 2007, Thomas et al. 2008, Gering et al. 

2011, INL-EXT-08-15136 2012, and INL/EXT-14-32849 2014).  These studies and others (e.g., 

see Wright et al. 2002, Bloom et al. 2003, Wohlfahrt-Mehrens et al. 2004, Broussely et al. 2005, 

Vetter et al. 2005, Zhang 2006, Anseán 2013, Barré et al. 2013, Han et al. 2014, Liu et al. 2016, 

and Xia et al. 2016) show that the estimation of battery life can be approached in a variety of 

ways and involve a variety of mechanisms.  In this paper, we explore the effects of elevated 

temperature on calendar aging under non-isothermal conditions.  Our main interest is to develop 

predictive models relating to the typical (average) degradation of cells under non-isothermal 

conditions. It is not our intent to predict reliability, per se, which can be greatly influenced by 

variation during production.  Our focus is particularly relevant in early phases of product 

development where the goal is to establish whether or not a particular cell design has the basic 

capability to meet requirements.     

With respect to calendar aging, the specific causes of capacity loss and resistance rise can 

vary depending on characteristics of the particular cell design including the associated anode, 

cathode, electrolyte, and binder materials (see e.g., Broussely et al. 2005, Vetter et al. 2005, 

Barré et al. 2013, and Han et al. 2014).  It is generally accepted that the resistance rise is largely 
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due to thickening of a solid interface that protects the anode from possible corrosion and the 

electrolyte from reductions as well as decreases in accessible surface area over time.  A major 

source of cell capacity loss is believed to be decomposition of the electrolyte which results in a 

loss of cyclable lithium. Nevertheless, the physical/chemical mechanisms associated with 

capacity loss and resistance rise vary across cell designs and are not understood with enough 

detail to allow for the development for quantitatively accurate mechanistic models of capacity 

loss and resistance rise.  Note that this lack of detailed knowledge is expected to be more 

pronounced for cells in development as opposed to cells in high-volume production.  

Consequently, the goal here was to conduct a simple experiment to help empirically characterize 

the degradation behavior under non-isothermal stress for this particular cell design.  

Using the nomenclature of Escobar and Meeker (2006), the experiment discussed here can be 

classified as an accelerated repeated measures degradation test (ARMDT).  That is, 

nondestructive measurements of internal cell resistance and capacity were acquired at various 

points in time from a sample of cells being subjected to several regimes of high temperature 

stress which was used in order to accelerate the calendar aging process.  A deterministic rate-

based empirical model that is intrinsically memoryless is proposed to represent the expected 

paths of the degradation measures considered.  Degradation models are formulated in terms of a 

non-decreasing relative response where the initial measurement of each cell is used as a basis to 

normalize subsequent measurements of that cell.  Data acquired from cells subjected to 

isothermal and non-isothermal stress were used to estimate the parameters of degradation models 

relating to resistance increase and capacity loss.  Uncertainty in the estimated model parameters 

is assessed via a parametric bootstrap procedure that is based on an observational model that 

incorporates cell-to-cell variation in the degradation rate as well as measurement error.  The 

plausibility of the degradation models (and memoryless degradation) is assessed by using the 

ability of the models to predict average cell performance under both isothermal and non-

isothermal conditions with consideration of uncertainties derived from the parametric bootstrap 

procedure.   

The remainder of this paper describes the experiment, the various models and methods used 

to analyze the experimental data, and the fitted models.  Section 2 describes the experiment 

including details of the stress conditions studied as well as the performance measurements that 

were acquired.  Section 3 describes the forms of the deterministic and observational models as 
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well as the methods used to estimate model parameters and associated uncertainty. Section 4 

presents fitted models for resistance increase and capacity loss and an assessment of the quality 

of the fits. Concluding remarks are given in Section 5.   

 

2. Experiment 

 

Commercially-available, high-power lithium-ion cells, which consisted of a Li(Mn, Co, 

Ni)O2 + Li-Mn-O spinel cathode and a graphite anode were tested.  They were 18650-sized cells 

(cylindrical cells about 18mm in diameter and 65mm in length) with a rated capacity of 1.2 Ah 

and a voltage range of 4.2 to 2.7 V.  This size of cell is used in a variety of applications ranging 

from laptop computers to plug-in electric vehicles.  Performance measurements were acquired 

via a Maccor series 4000 battery tester having a maximum voltage and current rating of 10 V and 

±12.5 A, respectively.  The test cells were placed in Tenney Junior temperature chambers that 

maintained ambient conditions of 45°C and 55°C during testing.  We believe that testing at these 

accelerated conditions does not introduce new aging mechanisms unobserved under nominal 

conditions.  We believe that the chamber temperatures were generally maintained very well 

within ±1°C of the targeted test profiles with a smaller level of variation in each chamber.  The 

cells were stored at room temperature for about 2 months before testing starting.   

Prior to being subjected to calendar life aging, all cells were characterized based on the plug-

in hybrid electric vehicle requirements at 30°C in terms of C/1 capacity measurement (a rate at 

which the entire battery will discharge in an hour); a scaled, 10-kW, constant-power discharge; a 

low-current hybrid pulse power characterization test (HPPC) (see Battery Test Manual for Plug-

In Hybrid Electric Vehicles 2014); an electrochemical impedance spectroscopy (EIS) 

measurement at 60% state of charge (SOC) (equivalent to open circuit voltage of 3.89 V) and 

C/25 charge and discharge capacity measurements.  C/25 is a rate at which the entire battery will 

be charged or discharged in 25 hours. The reference performance test (RPT) consisted of the C/1 

discharge capacity measurement, a scaled, 10-kW constant-power discharge, the HPPC test and 

the EIS measurement.  The HPPC data were used to estimate cell resistance as a function of open 

circuit voltage.  Cell resistance was estimated for each HPPC discharge and regen pulse (see 

Battery Test Manual for Plug-In Hybrid Electric Vehicles 2014).  After characterization, RPT0 

was performed at the start of testing and served as the basis from which performance decline was 
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determined.  RPT’s were conducted every 32 days at 30°C.  The focus of the analysis here are 

the measurements of cell resistance and discharge capacity. 

All cells were subjected to calendar life aging at 60% SOC.  Cells were randomly assigned to 

treatment groups as shown in Table 1.  The cells in Groups A and B were the isothermal control 

group, establishing baseline performance decay rates.  The cells in Group C experienced only 

one temperature change, which occurred after three months during which an approximate 15% 

power fade was observed.  The temperature for cells in Group D changed after each RPT. 

 

TABLE 1.  Distribution of Cells Versus Treatment Group 

Group Temperature(s), °C Cell count 

A 45 3 

B 55 3 

C 55-45 3 

D 55-45-55-45-… 3 

 

Calendar-life testing consisted of resting the cells at an open circuit voltage condition at the test 

temperature shown in Table 1.  The cells were soaked at the target test temperature for at least 4 

hours prior to the start of each calendar-life aging period to ensure thermal equilibrium.  A pulse-

per-day was also performed on the cells (see Battery Test Manual for Plug-In Hybrid Electric 

Vehicles 2014).  The cells were placed in an open-circuit condition between each pulse during 

calendar aging. Every 32 days, the cells were cooled to 30°C and allowed to equilibrate for at 

least 4 hours before the RPT was performed.  In all, 13 RPT’s (RPT0, RPT1, …, RPT12) were 

performed over the course of slightly more than a year. 
 

3. Modeling Approach 

It is common to use elevated temperature to accelerate the calendar aging process.  For the 

sake of simplicity, most battery tests are performed under isothermal conditions.   Isothermal 

conditions facilitate a basic understanding of the underlying mechanisms which are responsible 

for the observed performance decline and capture the expected range of aging.  However, a basic 

qualitative understanding of the underlying degradation mechanisms does not usually result in 

high fidelity, science-based, predictive models for resistance increase or capacity loss.  Thus, we 
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are motivated to use controlled experiments to develop predictive statistical models that are 

empirical in nature.  The usual intent is that models based on these results will accurately reflect 

the cumulative effects of exposure to a specific temperature.  However, automotive applications 

do not generally involve static temperature conditions.  Therefore, a cumulative degradation 

model defined in terms of a static temperature may not be useful to predict degradation of cells 

in these applications.  Rather, we focus on modelling the instantaneous degradation rate as it 

underlies any assessment of cumulative degradation in a variable stress (i.e. non-isothermal) 

environment.   We assume that the degradation measure contains useful information about the 

state of a cell.  While the degradation rate might be expressed by differentiating the cumulative 

degradation models, a more straightforward approach is to consider a degradation rate model 

directly (e.g., see Chan and Meeker 2001 and Thomas et al. 2012).  Once developed, the rate 

model can be integrated over the stress history to express the level of cumulative degradation. 

Here, we develop degradation rate models that are formulated in terms of a non-decreasing 

relative response (e.g., see Thomas et al. 2008, 2012) that pertain directly to definitions of 

battery life.  In the case of resistance, we consider relative resistance where the data used for 

modeling are the values of resistance from RPT1-12 divided by the corresponding cell-specific 

resistance values measured at RPT0.  In the case of discharge capacity, we consider inverse 

relative capacity.  Note that both measures of degradation (relative resistance and inverse relative 

capacity) mitigate the effects of cell-to-cell variation in the initial resistance and capacity 

measurements and have an initial value of one at RPT0.  This normalization is important since 

cell-to-cell effects can be significant during pre-production phases of manufacturing.  As the 

cells age, the expected values of both degradation measures increase. 

The family of degradation rate models that we consider are memoryless, which means that 

the rate of degradation depends only on the current degradation state (measured by relative 

resistance or capacity) and the current stress level (temperature).  Others (e.g., see Tseng and 

Wen 2000, Chan and Meeker 2001, and Peng and Tseng 2010) consider simplified forms of 

memoryless models where the rate of degradation depends only on the current stress level.  We 

propose a broader class of rate models that also depend on the current state and therefore have 

the ability to portray a wider range of degradation behavior. 
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In order to assess the plausibility of the deterministic degradation models we also need a 

reasonable understanding of the levels of uncertainty in the estimated model parameters.  We do 

this via a parametric bootstrap procedure that incorporates measurement error and cell-to-cell 

variation as sources of model uncertainty.  These random effects are added to the deterministic 

model in order to form observational models that are derived specifically for each of the relative 

degradation measures used. The observational models are intended to provide an accurate 

description of the observed cell performance at use conditions over time and include the 

variances of the measurement error and cell-to-cell effects as additional parameters. The 

subsections that follow discuss the deterministic and observational models separately.  

 

3.1 Rate-Based Deterministic Degradation Model 

Here, either relative resistance or inverse relative capacity is used to indicate the state of the 

degradation process in a rate-based deterministic model framework, as described in Thomas et 

al. 2012.  The underlying rate-based model has the form 

𝑑𝑚(𝑇[0,𝜏])

𝑑𝜏
= 𝑘(𝑇(𝜏)) ∙ 𝑚(𝑇[0, 𝜏])𝜌,                                                               (1) 

where 𝑚(𝑇[0, 𝜏]) is the theorized/expected value of either one of the relative degradation 

measures following exposure to a temperature profile given by 𝑇[0, 𝜏], and k is a function of the 

instantaneous temperature at time , 𝑇(𝜏). 

Equation (1) depicts one possible form of a memoryless process since the current degradation 

rate depends only on the assumed current state of the process, 𝑚(𝑇[0, 𝜏]), and the current 

temperature, 𝑇(𝜏).  Equation (1) could be generalized in many ways.  For example, the 

degradation rate could be redefined to depend on multiple stress factors and measures of state.  

The rate of increase of both degradation measures considered is affected by k, which is assumed 

to be a non-decreasing function of temperature.  In general, one might express k in terms of an 

Arrhenius or some other well-established model (e.g., see Escobar and Meeker 2006).  Here, 

given the motive of this analysis, the limited temperature range, and number of temperature 

levels involved (two), we express 𝑘(𝑇(𝜏)) as a simple linear function, 𝑘(𝑇(𝜏)) = 𝑎 + 𝑏 ∙ 𝑇(𝜏).  

While it is not possible to validate the linear rate dependence without data from additional 

temperature levels, the linear rate form will suffice here given that we need to evaluate 𝑘(𝑇(𝜏)) 
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at only two levels of temperature.  The purpose of  is to provide additional modelling 

flexibility.  If  is found to be indistinguishable from zero, this implies that the degradation rate 

remains constant over time for a given temperature.  If  is found to be distinguishable from 

zero, this implies that the rate expressed in Equation (1) either increases (𝜌 > 0) or decreases 

(𝜌 < 0) over time for a given temperature. For example, a decreasing degradation rate might be 

caused by a loss of reactants due to consumption during previous degradation episodes. 

The integration of Equation (1) over the temperature profile, 𝑇[0, 𝑡], in combination with the 

initial condition (𝑚𝑡=0 = 1) yields an integral equation that provides the expected value of the 

degradation measure at time t, 

𝑚(𝑇[0, 𝑡]) = 1 + ∫ 𝑘(𝑇(𝜏)) ∙ 𝑚(𝑇[0, 𝜏])𝜌𝑑𝜏
𝑡

0
.                                             (2) 

 

As indicated in Equation (2), the degradation measures depend on the aging temperature profile 

via 𝑘(𝑇(𝜏)).  Section 3.3 will discuss methods for estimating the model parameters (a, b, and ). 

 

3.2 Observational Models 

Due to measurement error and cell-to-cell variation, the observed values of the degradation 

measures for the jth cell, 𝑀(𝑇𝑗[0, 𝑡]), deviate from their expected values,  𝑚(𝑇𝑗[0, 𝑡]), where  

𝑇𝑗[0, 𝑡] represents the specific temperature profile experienced by the jth cell.  In order to 

simplify the notation going forward, 𝑀(𝑇𝑗[0, 𝑡]) and 𝑚(𝑇𝑗[0, 𝑡]) will be referred to as 𝑀𝑗(𝑡) and 

 𝑚𝑗(𝑡) , respectively.  In the case of the resistance, we represent the observed degradation 

measure by 

𝑀𝑗(𝑡) =
𝑌𝑗(𝑡)

𝑌𝑗(0)
=

𝑦𝑗(𝑡) + 𝜀𝑗(𝑡)

𝑦𝑗(0) + 𝜀𝑗(0)
,                                                                                 (3) 

where 𝑌𝑗(𝑡) is the measured resistance of the jth cell at time t, 𝑦𝑗(𝑡) is the true (unobserved) 

resistance, and 𝜀𝑗(𝑡) is a random measurement error of resistance.  The measurement errors are 

assumed to be independent with mean zero and variance 𝜎𝜀
2.  Furthermore, it is assumed that 

  𝑦𝑗(𝑡) = 𝑦𝑗(0) ∙ (𝑚𝑗(𝑡) + 𝛿𝑗 ∙ (𝑚𝑗(𝑡) − 1)),                                                             (4)                                                   
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where 𝑦𝑗(0) and 𝛿𝑗 are cell-specific effects that could be regarded as natural consequences of 

manufacturing variation.  Underlying cell-to-cell variation in the initial resistance (distinct from 

measurement error) is represented in Equation (4) by 𝑦𝑗(0).  In addition, 𝛿𝑗 is a random effect 

with mean zero and variance 𝜎𝛿
2 that represents cell-to-cell variation in rate of degradation.  

While Equation (4) is empirical, it reflects observed attributes of the degradation data that are 

considered here (see Section 4.1).  It follows that 

𝑀𝑗(𝑡) =
𝑦𝑗(0) ∙ ( 𝑚𝑗(𝑡) + 𝛿𝑗 ∙ ( 𝑚𝑗(𝑡) − 1)) + 𝜀𝑗(𝑡)

𝑦𝑗(0) + 𝜀𝑗(0)
 .                                                (5) 

Without loss of generality we simplify Equation (5) by letting 𝑦𝑗(0) = 1 and acknowledge that 

𝜀𝑗(0) and 𝜀𝑗(𝑡) must be correspondingly scaled.  This results in  

𝑀𝑗(𝑡) =
 𝑚𝑗(𝑡) + 𝛿𝑗 ∙ ( 𝑚𝑗(𝑡) − 1)   + 𝜀𝑗(𝑡)

1 + 𝜀𝑗(0)
 .                                                            (6) 

In the case of the capacity, we represent the observed degradation measure by  

𝑀𝑗(𝑡) =
𝑌𝑗(0)

𝑌𝑗(𝑡)
=

𝑦𝑗(0) + 𝜀𝑗(0)

𝑦𝑗(𝑡) + 𝜀𝑗(𝑡)
,                                                                                      (7) 

where 𝑌𝑗(𝑡) is the measured capacity, 𝑦𝑗(𝑡) is the true (unobserved) capacity, and 𝜀𝑗(𝑡) is a 

random measurement error of capacity.  In the case of capacity, we propose that 

𝑦𝑗(𝑡) = 𝑦𝑗(0) ∙ (1 ( 𝑚𝑗(𝑡) + 𝛿𝑗 ∙ ( 𝑚𝑗(𝑡) − 1))⁄ ).                                                                         (8) 

With that assumption, it follows that 

𝑀𝑗(𝑡) =
 𝑦𝑗(0) + 𝜀𝑗(0)

𝑦𝑗(0) ∙ (1 ( 𝑚𝑗(𝑡) + 𝛿𝑗 ∙ ( 𝑚𝑗(𝑡) − 1))⁄ ) + 𝜀𝑗(𝑡)
 .                                     (9) 

Again, by letting 𝑦𝑗(0) = 1, Equation (9) can be represented as 

𝑀𝑗(𝑡) =
 1 + 𝜀𝑗(0)

1 ( 𝑚𝑗(𝑡) + 𝛿𝑗 ∙ ( 𝑚𝑗(𝑡) − 1))⁄ + 𝜀𝑗(𝑡)
 .                                                      (10) 
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For purposes of fitting and assessing the fit of the degradation models, it is important to 

understand the uncertainty in the observed degradation measures.  First, we assume that the 

random effects, 𝛿𝑗 and 𝜀𝑗(𝑡), are sufficiently small relative to the true (unobserved measures).  

Given the magnitude of the random effects studied here, the expected value of  𝑀𝑗(𝑡) is 

essentially equal to 𝑚𝑗(𝑡).  In other cases, a second-order Taylor-series expansion of  𝑀𝑗(𝑡) may 

be required in order to obtain a satisfactory approximation for the expectation of 𝑀𝑗(𝑡).  First-

order Taylor-series expansions of  𝑀𝑗(𝑡) are used to obtain the following approximation for the 

variance of  𝑀𝑗(𝑡).     

 𝑉𝑎𝑟 (𝑀𝑗(𝑡)) ≈ (
𝜕𝑀𝑗(𝑡)

𝜕𝜀𝑗(𝑡)
)

2

∙ 𝑉𝑎𝑟 (𝜀𝑗(𝑡)) + (
𝜕𝑀𝑗(𝑡)

𝜕𝜀𝑗(0)
)

2

∙ 𝑉𝑎𝑟 (𝜀𝑗(0)) + (
𝜕𝑀𝑗(𝑡)

𝜕𝛿𝑗
)

2

∙ 𝑉𝑎𝑟(𝛿𝑗),     (11) 

where the partial derivates are evaluated at the expected values of 𝜀𝑗(0), 𝜀𝑗(𝑡), and 𝛿𝑗 which are 

zero.  In the case of relative resistance, 

              𝑉𝑎𝑟 (𝑀𝑗(𝑡)) ≈ (1 + 𝑚𝑗(𝑡)2) ∙ 𝜎𝜀
2 + (𝑚𝑗(𝑡) − 1)

2
∙ 𝜎𝛿

2.                                             (12) 

In the case of inverse relative capacity, 

                  𝑉𝑎𝑟 (𝑀𝑗(𝑡)) ≈ (𝑚𝑗(𝑡)2 + 𝑚𝑗(𝑡)4)𝜎𝜀
2 + (𝑚𝑗(𝑡) − 1)

2
∙ 𝜎𝛿

2.                                   (13) 

We likewise obtain approximations for  𝐶𝑜𝑣(𝑀𝑗(𝑡),  𝑀𝑗(𝑡′); 𝑡′ ≠ 𝑡 ).  In the case of relative 

resistance, 𝐶𝑜𝑣(𝑀𝑗(𝑡),  𝑀𝑗(𝑡′) ; 𝑡′ ≠ 𝑡) ≈ 

[
𝜎𝜀

2

(1+𝜎𝜀
2)

2 + 1] ∙ {𝑚𝑗(𝑡) ∙ 𝑚𝑗(𝑡′) + 𝜎𝛿
2 ∙ (𝑚𝑗(𝑡) − 1) ∙ (𝑚𝑗(𝑡′) − 1)} − 𝑚𝑗(𝑡) ∙ 𝑚𝑗(𝑡′) .            (14) 

In the case of inverse relative capacity, 

𝐶𝑜𝑣(𝑀𝑗(𝑡),  𝑀𝑗(𝑡′) ; 𝑡′ ≠ 𝑡) ≈ 

[1 + 𝜎𝜀
2] ∙ {𝑚𝑗(𝑡) ∙ 𝑚𝑗(𝑡′) + 𝜎𝛿

2 ∙ (𝑚𝑗(𝑡) − 1) ∙ (𝑚𝑗(𝑡′) − 1)} − 𝑚𝑗(𝑡) ∙ 𝑚𝑗(𝑡′) .                   (15) 

If the random effects are sufficiently small, these approximations are very accurate (see Section 

4.1.1). By further assuming a distributional form for these effects, one can effectively use these 

approximations for estimating the complete set of model parameters (a, b, , 𝜎𝜀
2, and 𝜎𝛿

2) by 
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using maximum likelihood methodology (see Section 3.3). Here, we will assume that the random 

effects are normally distributed. 

3.3 Methods to Estimate Model Parameters 

A three-step procedure was used to estimate the model parameters for each of the two 

responses.  The first step was to obtain preliminary estimates of the parameters associated with 

the expected degradation rate (a, b, and 𝜌).  This was accomplished via robust nonlinear least-

squares regression using iteratively reweighted least squares implemented with a biweight 

weighting function (e.g., see Holland and Welsch 1977) with the tuning parameter, c, set to 

4.685.  At each iteration of the nonlinear regression procedure, predicted values of the given 

response were computed for each observation by using a numerical approximation to the integral 

in Equation (2) in association with the current, but evolving, parameter estimates. At each 

iteration, numerical predictions of 𝑚𝑗(𝑡), denoted by 𝑚̂𝑗(𝑡) were obtained by subdividing t into 

one-hour intervals (∆𝑡) using the simple method shown in Thomas et al. (2012) and summarized 

below in Table 2.  In other cases where the stress level was changing rapidly, one could perhaps 

use smaller intervals and/or more precise forms of numerical integration. 

TABLE 2.  Numerical Prediction of Degradation Measure 

Time, 𝜏 T(𝜏) 𝑚̂𝑗(𝜏)  

0 T(0) 𝑚̂𝑗(0)=1  

∆𝑡 T(∆𝑡) 𝑚̂𝑗(0) + 𝑘̂(𝑇(0)) ∙ 𝑚̂𝑗(0)𝜌̂ ∙ ∆𝑡  

2 ∙ ∆𝑡 T(2 ∙ ∆𝑡) 𝑚̂𝑗(∆𝑡) + 𝑘̂(𝑇(∆𝑡)) ∙ 𝑚̂𝑗(∆𝑡)𝜌̂ ∙ ∆𝑡  

⁞ ⁞ ⁞  

𝑡 = 𝑁 ∙ ∆𝑡 T(t) 𝑚̂𝑗((𝑁 − 1) ∙ ∆𝑡) + 𝑘̂(𝑇((𝑁 − 1) ∙ ∆𝑡)) ∙ 𝑚̂𝑗((𝑁 − 1) ∙ ∆𝑡)𝜌̂ ∙ ∆𝑡  

 

The second step was to obtain preliminary estimates of the parameters associated with the 

random effects (𝜎𝜀
2 and 𝜎𝛿

2) for each of the two responses.  In the absence of results from a 

relevant measurement capability study, an initial estimate of the measurement error variance (𝜎𝜀
2) 
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involves the predicted value of 𝑚𝑗(𝑡) and the observed sample variance of 𝑀𝑗(𝑡) for cells in 

Groups B, C, and D during RPT1, denoted by 𝑚̂𝐵𝐶𝐷−1 and 𝑉̂𝑎𝑟(𝑀𝐵𝐶𝐷−1), respectively.  These 

estimates of the measurement error variance are based on simplified versions of Equations (12) 

and (13).  In the case of relative resistance, 

𝜎̂𝜀
2(𝑖𝑛𝑖𝑡) = 𝑉̂𝑎𝑟(𝑀𝐵𝐶𝐷−1) (1 + 𝑚̂𝐵𝐶𝐷−1

2 )⁄ .                                                    (16) 

In the case of inverse relative capacity, 

𝜎̂𝜀
2(𝑖𝑛𝑖𝑡) = 𝑉̂𝑎𝑟(𝑀𝐵𝐶𝐷−1) (𝑚̂𝐵𝐶𝐷−1

2 + 𝑚̂𝐵𝐶𝐷−1
4 )⁄ .                                                    (17) 

The rationale for using 𝑉̂𝑎𝑟(𝑀𝐵𝐶𝐷−1) and 𝑚̂𝐵𝐶𝐷−1
2  is that all cells in Groups B, C, and D 

nominally received the same treatment through RPT1.  Furthermore, the nature of the relative 

measures tends to mitigate the effects of cell-to-cell variation in the initial resistance and 

capacity measurements.  The rationale for ignoring the contribution of (𝑚𝑗(𝑡) − 1)
2

∙ 𝜎𝛿
2 to 

𝑉𝑎𝑟 (𝑀𝑗(𝑡)) that is given in Equations (12) and (13) is that at RPT1, 𝑚̂𝐵𝐶𝐷−1
2  is very nearly one 

and the computational contribution of (𝑚̂𝐵𝐶𝐷−1
2 − 1)2 is minor unless 𝜎𝛿

2 is very large. 

With an initial estimate for 𝜎𝜀
2 in hand, an initial estimate of the variance of the cell-specific 

effect is based on Equations (12) and (13).  In the case of relative resistance,  

𝜎̂𝛿
2(𝑖𝑛𝑖𝑡) = 𝑀𝑒𝑎𝑛

𝑚̂𝑖𝑟≥1.2
{

𝑉̂𝑎𝑟(𝑀𝑖𝑟) − (1 + 𝑚̂𝑖𝑟
2 ) ∙ 𝜎̂𝜀

2(𝑖𝑛𝑖𝑡)

(𝑚̂𝑖𝑟 − 1)2
},                                                               (18) 

where 𝑀𝑖𝑟 represents the collective set of observed values of 𝑀𝑗(𝑡) associated with the ith 

treatment group and the rth RPT, 𝑚̂𝑖𝑟, represents the predicted value of 𝑚𝑗(𝑡), and 𝑉̂𝑎𝑟(𝑀𝑖𝑟) 

represents the sample variance for that same set.   In the case of inverse relative capacity,  

𝜎̂𝛿
2(𝑖𝑛𝑖𝑡) = 𝑀𝑒𝑎𝑛 (50%)

𝑚̂𝑖𝑟≥1.2
{

𝑉̂𝑎𝑟(𝑀𝑖𝑟) − (𝑚̂𝑖𝑟
2 + 𝑚̂𝑖𝑟

4 ) ∙ 𝜎̂𝜀
2(𝑖𝑛𝑖𝑡)

(𝑚̂𝑖𝑟 − 1)2
},                                               (19) 

Only those conditions where 𝑚̂𝑖𝑟 ≥ 1.2 are considered since the level of cell-to-cell divergence 

within a treatment group caused by 𝛿𝑗 is inconsequential and therefore largely uninformative at 

early stages of degradation.   
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The final step is to re-estimate the model parameters jointly by using maximum likelihood 

(M.L.) estimation.  Let 𝒅𝒋 = {𝑑𝑗𝑟 = 𝑀𝑗(𝑟) − 𝑚𝑗(𝑟), 𝑟 = 1: 𝑛𝑟}, where 𝑑𝑗𝑟 represents the 

difference between observed and expected performance measures for the jth cell at the rth RPT.  

Given the previous assumptions concerning 𝜀𝑗(𝑡) and 𝛿𝑗, it follows that 𝒅𝒋 and 𝒅𝒋′ (𝑗′ ≠ 𝑗) are 

independent.  Given that 𝜀𝑗(𝑡) and 𝛿𝑗 are assumed to be normally distributed, then 𝒅𝒋 is 

approximately multivariate normal with zero mean and covariance, 𝜮𝑗 (see Section 4.1.1).  

Equations 12-15 provide approximations for the diagonal and off-diagonal elements of 𝜮𝑗 in 

terms of the model parameters.  These equations involve 𝜎𝜀
2, 𝜎𝛿

2, and 𝑚𝑗(𝑟), which is defined by 

a, b, and .  With respect to the combined measurements of the jth cell, the likelihood function of 

𝜽 = (𝑎, 𝑏, 𝜌, 𝜎𝜀
2, 𝜎𝛿

2) is 𝐿𝑗(𝜽) = 𝑓 (𝒅𝒋; 𝟎, 𝜮𝑗(𝜽)), where f is the multivariate normal pdf with 

mean zero and covariance 𝜮𝑗(𝜽).  Across measurements of all cells, the aggregate likelihood 

function of 𝜽 is 𝐿(𝜽) = ∏  𝐿𝑗(𝜽) = ∏ 𝑓 (𝒅𝒋; 𝟎, 𝜮𝑗(𝜽))12
𝑗=1

12
𝑗=1 . The M.L. estimate of 𝜽 is        

𝜽̂ = (𝑎̂, 𝑏̂, 𝜌̂, 𝜎̂𝜀
2, 𝜎̂𝛿

2) = 𝒂𝒓𝒈 𝒎𝒂𝒙
𝜽

𝑙(𝜽), where 𝑙(𝜽) = ∑ 𝑙𝑛 (𝑓 (𝒅̂𝒋; 𝟎, 𝜮̂𝑗(𝜽)))12
𝑗=1  and where 

𝒅̂𝒋 = {𝑑̂𝑗𝑟 = 𝑀𝑗(𝑟) − 𝑚̂𝑗(𝑟), 𝑟 = 1: 𝑛𝑟}, 𝜮̂𝑗(𝜽), and 𝑚̂𝑗(𝑟) (which is a component of 𝒅̂𝒋 and 

𝜮̂𝑗(𝜽)) are based on estimates of the model parameters.  Here, we rely on numerical optimization 

using the simplex search method as implemented in MATLAB (e.g., see Lagarias et al. 1998) by 

minimizing −𝑙(𝜽) with the function, fminsearch, to obtain 𝜽̂.  Initial estimates for a, b, and 𝜌 

were obtained by robust nonlinear regression.  As discussed earlier, initial estimates for 𝜎𝜀
2 and 

𝜎𝛿
2 were obtained via Equations 16-19. 

As a caveat, note that while the estimates of 𝜎𝜀
2 and 𝜎𝛿

2 are intended to represent the levels of 

measurement error and cell-to-cell variation in the degradation rate, they are in fact non-specific.  

For example, systematic differences in temperature exposure within a treatment group (due to 

temperature variation within a temperature chamber) could inflate the estimate of cell-to-cell 

variation in the degradation rate.  Furthermore, imperfect temperature control is a source of lack 

of fit associated with the degradation model.  Finally, lack of fit with respect to the degradation 

model can affect the estimates of 𝜎𝜀
2 and 𝜎𝛿

2. 
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3.4 Bootstrap Simulation 

The standard errors of the fitted degradation model parameters and other statistics were obtained 

by using a parametric bootstrap method (see e.g., Efron and Tibshirani 1993, Meeker, Escobar, 

and Lu 1998, and Thomas et al. 2008) involving 1000 simulation trials.  Each simulation trial of 

the bootstrap procedure was designed to mimic the actual experiment in terms of test duration, 

RPT frequency, experimental conditions, and number of cells per condition. Random realizations 

of Gaussian distributed measurement errors, 𝜀𝑗(𝑡), and cell-specific effects, 𝛿𝑗, with zero mean 

and variances 𝜎̂𝜀
2 and 𝜎̂𝛿

2, respectively, were added via Equation (6) (or Equation (10)) to the 

assumed truth as given by the fitted degradation models.  Model parameters were estimated for 

each simulation trial.  The bootstrap standard errors are derived from the ensemble of parameter 

estimates obtained from the simulation trials. 

   

4. Experimental Results and Fitted Models 

All of the data (Groups A, B, C, and D) were used to develop separate degradation models 

for relative resistance and inverse relative capacity.  The models were used to predict the 

expected degradation paths for each temperature profile given in Table 1.  The initial capacity 

and resistance measurements acquired at RPT0 are given in Table 3 for each of the treatment 

groups.  

  

TABLE  3.  Initial capacity and resistance values 

Group Capacity, Ah  Cell resistance at 60% SOC, mΩ 

A 1.263, 1.264, 1.267 47.16, 47.83, 49.15 

B 1.261, 1.265, 1.270 48.37, 48.37, 49.48 

C 1.262, 1.262, 1.263 47.79, 47.86, 48.26 

D 1.261, 1.263, 1.263 47.25, 47.58, 47.66 

 

Figure 1 displays relative resistance versus inverse relative capacity for all cell measurements.  

The measurements are distinguished by treatment group.  While relative resistance and inverse 

relative capacity are different metrics and may involve a mix of similar and different degradation 

mechanisms, it is interesting to observe that they are nearly equivalent everywhere except at the 
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highest degradation levels where relative resistance tends to exceed inverse relative capacity.  

This deviation between relative resistance and relative capacity occurs when the relative 

resistance exceeds 1.6 (e.g., see Group B cells at long exposure). 

 

FIGURE 1.  Relative resistance versus inverse relative capacity, by group.  The arrow indicates 

where relative resistance and relative capacity begin to diverge. 

 

4.1 Resistance 

Figure 2 illustrates how the fitted relative resistance model obtained by M.L. estimation 

relates to the experimental data (by group) for all profiles.  The initial and M.L. estimates of the 

degradation model parameters (a, b, and ) and variance components (𝜎𝜀
2 and 𝜎𝛿

2) are given in 

Table 4.  Note that 𝜌̂ can be statistically distinguished from (and is larger than) zero.  Consistent 

with 𝜌 > 0, a close examination of the Group B data shows that the rate of increase in resistance 

appears to increase subtly as the resistance increases.  Given that the average initial resistance 

was about 48 mΩ, it follows that the standard deviation of measurement error is estimated to be 

about 0.5 mΩ.  An examination of the behavior of cells within treatment groups in Figure 2 
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reveals a divergence in performance over time.  The nature of divergence is inconsistent with a 

Brownian motion process such as modeled by Peng and Tseng 2010, since the degradation paths 

observed generally continue to separate without crossover.  However, the nature of divergence is 

consistent with unit-to-unit variability in the degradation rate, hence motivating the random 

effect, 𝛿𝑗.   Note that random unit-to-unit variability in the degradation rate (relating to the power 

of integrated circuits) was also observed and modeled by Meeker, Escobar, and Lu 1998.  Based 

on the estimate of 𝜎𝛿
2, we conclude that the rate of relative resistance rise across cells varies with 

a standard deviation of about 5%. 

 

FIGURE 2.  Relative resistance vs. time for each group.  Data from individual cells are 

represented by markers that are connected by dashed curves. The fitted model is represented by 

the heavy, solid curves. 

TABLE 4.  Estimates of Model Parameters and Variance Components, Relative Resistance 

 𝑎̂,  𝑏̂, °K-1 𝜌̂ 𝜎̂𝜀
2 𝜎̂𝛿

2 

Initial Estimate 

M.L. 

Std. Error* 

-5.35 × 10-2 

-5.65 × 10-2  

(1.9 × 10-3) 

1.71 × 10-4 

1.80 × 10-4  

(5.8 × 10-6) 

4.07 × 10-1 

3.60 × 10-1  

(3.4 × 10-2) 

5.0 × 10-5 

1.07 × 10-4 

 (1.4 × 10-5) 

1.7 x 10-3 

3.0 x 10-3 

(1.4 × 10-3) 

*Std. Error = standard deviation of bootstrap estimates (M.L.) 
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4.1.1 Assessment of Maximum Likelihood Estimator  

The process for obtaining the M.L. estimate (𝜽̂) is influenced by the accuracy of the 

approximations used for the various elements of 𝜮̂𝑗(𝜽) that are used during the numerical 

optimization process.  Based on Equations (12) - (15), these approximations are given in terms of 

the model parameters.  A small simulation study was performed in order to assess the accuracy 

of these approximations.  In this study, various values of 𝑚𝑗(𝑡) were assumed along with the 

M.L. estimates of  𝜎𝜀
2 and 𝜎𝛿

2.  Assuming normality of  𝛿𝑗, 𝜀𝑗(0), and 𝜀𝑗(𝑡), one million values of 

𝑀𝑗(𝑡) were simulated via Equation (6) for each value of 𝑚𝑗(𝑡).  Figure 3 displays the 

approximation for 𝑉𝑎𝑟 (𝑀𝑗(𝑡)) based on Equation (12) along with the simulated variance of 

𝑀𝑗(𝑡) observed for each value of 𝑚𝑗(𝑡).  Equation (14) was also found to provide accurate 

approximations for  𝐶𝑜𝑣(𝑀𝑗(𝑡),  𝑀𝑗(𝑡′); 𝑡′ ≠ 𝑡 ) over the conditions considered.  Finally, the 

distributions of simulated values of 𝑀𝑗(𝑡) were well represented by normal approximations, thus 

supporting the estimation process that was used. 

 

FIGURE  3.  Variance (approximated and simulated) of 𝑀𝑗(𝑡) versus 𝑚𝑗(𝑡). 
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The results from the bootstrap simulation were also used to assess the performance of 𝜽̂ with 

respect to each model parameter.  Table 5 provides the mean and standard deviation of the 1,000 

bootstrap estimates for each of the model parameters.  Based on the results in Table 5, we 

conclude that the M.L. estimator (with the exception of 𝜎̂𝛿
2) is effectively unbiased for the 

conditions simulated here. Due to the relatively small sample of cells observed in the experiment 

(twelve), 𝜎̂𝛿
2 is an estimate with poor precision and under estimates 𝜎𝛿

2 by about 10% on average, 

which is consistent with the factor 
1

𝑛𝑐𝑒𝑙𝑙𝑠
=

1

12
.  Figure 4 displays the distribution of the values of 

𝜎̂𝛿
2 obtained from the bootstrap.  Finally note that 𝑎̂ and 𝑏̂ are very highly correlated (negatively), 

with each being only moderately correlated with 𝜌̂.  Estimates of the variance components show 

little correlation with 𝑎̂, 𝑏̂, or 𝜌̂. 

TABLE 5.  Summary of parameter estimates from bootstrap, relative resistance 

 𝑎̂,  𝑏̂, °K-1 𝜌̂ 𝜎̂𝜀
2 𝜎̂𝛿

2 

Assumed Truth 

Mean 

Standard Deviation 

-5.65 × 10-2 

-5.65 × 10-2 

1.9 × 10-3 

1.80 × 10-4 

1.80 × 10-4 

5.8 × 10-6 

3.60 × 10-1 

3.61 × 10-1 

3.4 × 10-2 

1.07 × 10-4 

1.06 × 10-4 

1.4 × 10-5 

3.0 × 10-3 

2. 7 × 10-3 

1.4 × 10-3 

 

FIGURE  4.  Empirical cumulative distribution function of 𝜎̂𝛿
2 from bootstrap simulations. 
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4.1.2 Lack of Fit  

Since our main interest relates to expected levels of degradation, our primary focus is the 

fitted degradation model. Lack of fit with respect to the fitted degradation model was measured 

by using the statistic, 𝑆𝑆𝐿𝑂𝐹 = ∑ ∑
(𝑀̅𝑖𝑟−𝑚̂𝑖𝑟)2

𝜎̂𝑖𝑟
2 𝑛𝑖𝑟⁄

𝑁𝑅𝑃𝑇(𝑖)

𝑟=1
4
𝑖=1  , where the outer sum is indexed by the 

temperature profile groups and the inner sum is indexed by the reference performance test 

sequence subsequent to the initial RPT.  In all but one case (Group D),  𝑁𝑅𝑃𝑇(𝑖) = 12.  𝑀̅𝑖𝑟 (and 

𝑚̂𝑖𝑟) represent the average observed (and predicted) relative performance measure associated 

with the cells associated with the ith group at the rth RPT.  In addition, 𝜎̂𝑖𝑟
2 𝑛𝑖𝑟⁄  represents the 

estimated variance of 𝑀̅𝑖𝑟 (based on the observational model), where 𝑛𝑖𝑟 = 3 is the number of 

cells in each treatment group and 𝜎̂𝑖𝑟
2 = (1 + 𝑚̂𝑖𝑟(𝑡)2) ∙ 𝜎̂𝜀

2 + (𝑚̂𝑖𝑟(𝑡) − 1)2 ∙ 𝜎̂𝛿
2 is the estimated 

variance of 𝑀𝑗(𝑡) for cells in the ith group at the rth RPT based on Equation (12).  The value of  

𝑆𝑆𝐿𝑂𝐹 for the fitted degradation model (69.1) can be compared with the distribution of the values 

of the lack-of-fit statistics obtained via the bootstrap procedure that is summarized in Fig. 5.  

Given that the lack-of-fit measure associated with the fitted model is exceeded by about 10% of 

the bootstrap-generated values, we conclude that there is some (but not overwhelming) statistical 

evidence for lack of fit.  About one-quarter of the 𝑆𝑆𝐿𝑂𝐹 is associated with two (of the 47) 

subsets of data (Group A at RPT2 and Group A at RPT3) and three-fourths of the  𝑆𝑆𝐿𝑂𝐹 is 

associated with Group A data. 

We are also interested in lack of fit as it relates to the estimated variance components.  

Hence, we would like to assess how well the modeled variance of 𝑀𝑗(𝑡), estimated by 𝜎̂𝑖𝑟
2 , 

relates to the various values of 𝑉̂𝑎𝑟(𝑀𝑖𝑟), which denote the sample variances of 𝑀𝑗(𝑡), that are 

observed within each treatment group / RPT.  Figures 6a and 6b enable this comparison by 

displaying 𝜎̂𝑖𝑟 and √𝑉̂𝑎𝑟(𝑀𝑖𝑟) for each treatment group / RPT versus the predicted relative 

resistance, 𝑚̂𝑖𝑟(𝑡).  In Figure 6a, the values of  𝑚̂𝑖𝑟(𝑡) and  𝜎̂𝑖𝑟 were based on the M.L. estimates 

presented in Table 4.  In Figure 6b, the values of  𝑚̂𝑖𝑟(𝑡) and  𝜎̂𝑖𝑟 were based on the initial 

estimates presented in Table 4.  By comparing Figures 6a and 6b it is apparent that 𝜎̂𝑖𝑟 based on 

the initial estimates of the variance components reproduced √𝑉̂𝑎𝑟(𝑀𝑖𝑟) more closely than 

estimates of 𝜎𝑖𝑟 based on the M.L. estimates of the variance components.  This is not surprising 

given that 𝜎̂𝛿
2(𝑖𝑛𝑖𝑡) in Equation (18) is largely based on the values of 𝑉̂𝑎𝑟(𝑀𝑖𝑟) and that 
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𝜎̂𝜀
2(𝑖𝑛𝑖𝑡) in Equation (16) is designed such that 𝜎̂𝑖𝑟

2 ≈ 𝑉̂𝑎𝑟(𝑀𝑖𝑟) when 𝑚̂𝑖𝑟(𝑡) ≈ 1. In addition, 

as previously noted, the M.L. estimate of 𝜎𝛿
2 has relatively poor precision.  Furthermore, a close 

examination of the results from the bootstrap realizations (based on the fitted degradation and 

variance component models) reveals that relationships between  √𝑉̂𝑎𝑟(𝑀𝑖𝑟) and 𝜎̂𝑖𝑟 (M.L.) such 

as observed in Figure 6a are not unusual. While the comparison between Figures 6a and 6b 

suggests that the initial estimates of the variance components might be more credible than the 

M.L. estimates of the variance components, it is important to re-emphasize that our main interest 

is associated with the degradation model and its associated parameters (a, b, and ).  From Table 

4, it is clear that the initial and M.L. estimates of the degradation model parameters are very 

consistent.  

At this point we have evaluated the degradation model and the diagonal elements of 𝜮̂𝑗(𝜽) 

for lack of fit.  Other aspects of the fitted degradation and observational models can also be 

evaluated for lack of fit.  For example, consider that the measurements associated with Group D 

cells were disproportionately small contributors to the log-likelihood function, 𝑙(𝜽) =

∑ 𝑙𝑛 (𝑓 (𝒅̂𝒋; 𝟎, 𝜮̂𝑗(𝜽)))12
𝑗=1 .  On average and across RPTs, the Group D measurements seem to 

straddle the model predictions (see Figure 2).  However, a closer examination reveals that, as a 

group, the Group D measurements are sometimes all above (at RPT1, RPT2, and RPT6) or all 

below (at RPT5 and RPT9) the model predictions.  As a consequence, the observed correlation 

between certain elements of 𝒅̂𝒋 = {𝑑̂𝑗𝑟 = 𝑀𝑗(𝑟) − 𝑚̂𝑗(𝑟), 𝑟 = 1: 𝑛𝑟} is strongly negative for 

Group D cells (e.g., between 𝑑̂𝑗1 and 𝑑̂𝑗5).  This behavior is hard to reconcile with the expected 

positive correlation between the elements of 𝒅̂𝒋 that is described by Equation (14) and is likely a 

source of Group D’s meager contribution to the log-likelihood function.  Perhaps this is 

indicative of a temperature control issue given that Group D cells experienced frequent changes 

in stress. 
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FIGURE  5.  Empirical cumulative distribution function of SSLOF from bootstrap simulations 

compared with the value of SSLOF (69.1) based on the fitted relative resistance model. 

 

FIGURE 6a.  Standard deviation of relative resistance within each treatment group/RPT 

(markers) compared with 𝜎̂𝑖𝑟 (solid curve) versus 𝑚̂𝑖𝑟(𝑡) using ML parameter estimates. 
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FIGURE 6b.  Standard deviation of relative resistance within each treatment group/RPT 

(markers) compared with 𝜎̂𝑖𝑟 (solid curve) versus 𝑚̂𝑖𝑟(𝑡) using initial parameter estimates. 

 

4.1.3 Comparison with Reduced Model  

For purposes of comparison, it is interesting to consider a reduced form of the full 

degradation model described in Equation (1).  That is, consider 

𝑑𝑚(𝑇[0,𝜏])

𝑑𝜏
= 𝑘(𝑇(𝜏)),                                                                        (20) 

where 𝑘(𝑇(𝜏)) = 𝑎 + 𝑏 ∙ 𝑇(𝜏).  Note that the model given in Equation (1) reduces to the model 

given in Equation (20) when 𝜌 = 0.  Thus, one can examine the evidence for the full model 

versus the reduced model by testing whether or not 𝜌 is distinguishable from zero.  In the 

reduced model, the degradation rate remains constant over time for a given temperature and as 

such is consistent with existing rate-based modelling approaches (e.g., see Tseng and Wen 2000, 

Chan and Meeker 2001, and Peng and Tseng 2010) where the degradation rate depends only on 

the current stress and not on the current state of the degradation measure.  By assuming the same 

observational model as described in Equations 4-6, Figure 7 illustrates the fit of the reduced 

model to the experimental data that is achieved by using the methods described in Section 3.3.  
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In this case, the M.L. estimates of the degradation and observational model parameters are     

𝑎̂ =  6.34 × 10−2, 𝑏̂ =  2.02 × 10−4, 𝜎̂𝜀
2 = 1.89 × 10−4 and 𝜎̂𝛿

2 = 5.4 × 10−3.  The most 

remarkable difference between the model fits represented in Figures 2 and 7 is with regard to the 

Group B data.  It is clear that the additional parameter associated with the full model (𝜌) is 

helpful to represent the increasing rate of resistance increase that is exhibited most strongly by 

the Group B cells.  This supports the utility of 𝜌̂ in the fitted full model, where  was found to be 

distinguishable from zero.   Also, the estimated variance components associated with the reduced 

model are noticeably larger, presumably due to lack of fit. 

 

FIGURE 7.  Relative resistance vs. time for each group, reduced model.  The data are 

represented by the markers, and the curves are the results of fitting the reduced model. 

 

4.2 Capacity 

Figures 8a and 8b illustrate how the fitted inverse relative capacity model obtained by M.L. 

estimation relates to the experimental data (by group) for all profiles.  The initial and M.L. 
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2 and 

0 50 100 150 200 250 300 350 400
1

1.2

1.4

1.6

1.8

2

2.2

Time, days

R
e
la

ti
v
e
 R

e
s
is

ta
n
c
e

 

 

Group A

Group B

Group C

Group D



26 
 

𝜎𝛿
2) are given in Table 6.  Note that the initial and M.L. estimates of the degradation model 

parameters are similar.  Unlike in the case of relative resistance (where 𝜌̂ was positive), 𝜌̂ is 

negative.  This is consistent with the divergence in behavior between relative resistance and 

inverse relative capacity that begins at about 1.6 relative units as shown in Figure 1.  Given that 

the average initial capacity was about 1.26 Ah, it follows that the standard deviation of 

measurement error is estimated by M.L. to be about 0.009 Ah and the rate of relative capacity 

decrease across cells varies with an estimated standard deviation of about 3%.  It is interesting to 

note that 0.009 Ah is equal to the entire range of capacity observed across the initial 

measurements (see Table 3), suggesting that M.L. is overestimating 𝜎𝜀
2.  The initial estimate of 

𝜎𝜀
2 seems more credible and leads to an estimated standard deviation of measurement error of 

about 0.004 Ah.  The value of  𝑆𝑆𝐿𝑂𝐹 for the fitted degradation model (242) can be compared 

with the distribution of the lack-of-fit statistics obtained via the bootstrap procedure that is 

summarized in Fig. 9.  Clearly, we can conclude that there is significant statistical evidence for 

overall lack of fit as the  𝑆𝑆𝐿𝑂𝐹 associated with the fitted model is far off scale.  The lack of fit, 

which can easily be visualized in Figs. 8a and 8b, is associated with all groups at RPT1 and 

Group D at all RPT’s.  Also, the fitted model does not capture the behavior of Group B cells at 

the later RPT’s where it seems that the degradation rate is slowing more than predicted.  

 

TABLE 6.  Estimates of model parameters and variance components, inverse relative capacity 

 𝑎̂,  𝑏̂, °K-1 𝜌̂ 𝜎̂𝜀
2 𝜎̂𝛿

2 

Initial Estimate 

M.L. 

Std. Error* 

-5.75 × 10-2 

-5.81 × 10-2  

(1.9 × 10-3) 

1.84 × 10-4 

1.86 × 10-4  

(6.1 × 10-6) 

-2.44 × 10-1 

-2.85 × 10-1  

(6.0 × 10-2) 

8.0 × 10-6 

5.43 × 10-5 

 (6.4 × 10-6) 

8.0 x 10-4 

1.17 x 10-3 

(6.2 × 10-4) 

*Std. Error = standard deviation of bootstrap estimates (M.L.) 
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FIGURE 8a.  Inverse relative capacity vs. time for all groups.   Data from individual cells are 

represented by markers that are connected by dashed curves. The fitted model is represented by 

the heavy, solid curves. 

 

 

FIGURE 8b.  Relative capacity vs. time for all groups. Data from individual cells are represented 

by markers. The fitted model is represented by the curves. 
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Fig. 9.  Empirical cumulative distribution function of SSLOF from bootstrap simulations, inverse 

relative capacity model. 

 

Without understanding the actual source(s) of the lack of fit that is observed with respect to 

the degradation model, it is clear that the model is inaccurate for predicting capacity during the 

early part of the degradation process.  The actual capacity lost between RPT0 and RPT1 is less 

than predicted for all stress conditions. However, the model seems to predict levels of cumulative 

degradation reasonably well after RPT1 for all stress conditions except in the case of Group D 

cells.  

The fitted degradation models for relative resistance and relative inverse capacity are similar 

yet distinct.  Measured by 𝑏̂, the estimated effect of temperature on the rate expression, 𝑘(𝑇(𝜏)), 

is similar for the two measures.  However, whereas the rate of increase in resistance seems to 

increase over time (positive value of 𝜌̂), the rate of increase in inverse capacity seems to decrease 

over time (negative value of 𝜌̂).  Clearly,  is useful to differentiate the subtle difference in the 

aging behavior of resistance and inverse capacity. Nevertheless, the similarity of these models is 

perhaps indicative of substantial commonality between the temperature-related mechanisms that 

cause the increase of resistance and the decrease in capacity.  The degradation behavior of 
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capacity seems to be more complex than that of resistance, primarily due to the smaller than 

expected level of capacity decrease observed between RPT0 and RPT1.  Finally, the discordant 

behavior of Group D cells is not well understood.  We speculate that this might have been caused 

by a temperature control issue, although we have no firm evidence of such. 

 

5. Discussion and Conclusions 

Here, we are concerned with whether or not a degradation processes can be considered to be 

memoryless, meaning the degradation rate depends only on the current state and current stress 

level. If the future degradation from the current state depends on how the process arrived at the 

current state, then we would conclude that the degradation process has memory and that the 

degradation measure considered is not a complete indicator of state.  Furthermore, it is unlikely 

that such a measure could provide useful predictions of degradation in non-constant stress 

environments. 

In the case study presented here, the aging behavior of a particular design of lithium-ion cells 

was studied under isothermal and non-isothermal calendar aging conditions in the temperature 

range of 45 to 55°C. Simple rate-based empirical models were developed and used to predict 

resistance increase and capacity decrease over both isothermal and non-isothermal conditions. 

Resistance increase appears to be reasonably well approximated by a memoryless process over 

the conditions studied for this particular cell chemistry/design based on the closeness of the fitted 

relative resistance model to the resistance data.  The decrease in capacity was found to be 

somewhat more complex.  Significant lack of fit was observed in certain instances, particularly 

early on in the degradation process.  The implication is that relative resistance after exposure to a 

temperature profile within the range of conditions considered, can be well approximated by 

Equation (2).  Furthermore, if this behavior extrapolates to use conditions, one could use these 

models to accurately predict the resistance rise in complex thermal environments such as found 

in automotive battery applications. Confirmation of these observations using additional 

experimentation involving realistic temperature paths at lower temperatures would be required in 

order to validate this conjecture. 

The form of the proposed rate-based degradation model, which is inherently memoryless, 

assumes a non-decreasing relative response and has the flexibility to portray an overall 

degradation rate (across stress levels) that is either increasing, decreasing, or remaining steady 
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over time.  The advantage of the proposed rate-based model over existing rate-based models, 

which assume a constant degradation rate at a given stress level, was clearly demonstrated in the 

example.  We believe that broadening the degradation rate dependence to include the current 

degradation state could be useful in other contexts involving non-constant or constant stress. 

Although we specified a particular form for the degradation rate in the example, other forms are 

possible and would need to be appropriate for the situation of interest.  Our particular 

observational model reflects the apparent random unit-to-unit variability in the degradation rate 

that is perceived in our example.  In other situations, the variability in degradation paths within a 

treatment group might be better represented by some other model, perhaps Brownian motion.  

Finally, a three-step process was used to estimate the parameters associated with the expected 

degradation rate and the magnitude of the variance components associated cell-to-cell variation 

and measurement error.  The final step involved joint maximum likelihood estimation of the 

three degradation rate parameters and both variance components.  Parametric bootstrap 

simulations were used to estimate parameter uncertainties as well as assess the performance of 

the maximum likelihood estimator.  In the context considered, we assess the maximum 

likelihood estimator to be effectively unbiased for all dimensions except for the variance 

component associated with cell-to-cell variation in the degradation rate.  This variance 

component tends to be under estimated due to the small number of cells studied. 
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